1. В ящике имеется 50 одинаковых деталей, из них 5 окрашенных. Наудачу вынимают одну деталь. Найти вероятность того, что извлеченная деталь окажется окрашенной.
2. Брошена игральная кость. Найти вероятность того, что выпадет четное число очков.
3. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4.
4. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.
5. В мешочке имеется 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о, п, р, с, т. Найти вероятность того что на вытянутых по одному и расположенных в «одну линию» кубиков можно будет прочесть слово «спорт».
6. Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлеченный кубик будет иметь окрашенных граней:
а) одну; б)две; в) три.
7. На каждой из шести одинаковых карточек напечатана одна из следующих букв: а, т, м, р, с, о. Карточки тщательно перемешаны. Найти вероятность того, что на четырех, вытянутых по одной и расположенных «в одну линию» карточках можно будет прочесть слово «трос».
8. Из тщательно перемешанного полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая кость: а) оказалась дублем; б) не есть дубль.
9. В замке на общей оси пять дисков. Каждый диск разделен на шесть секторов, на которых написаны различные буквы. Замок открывается только в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Найти вероятность того, что при произвольной установке дисков замок можно будет открыть.
10. Восемь различных книг расставляют наудачу на одной полке. Найти вероятность того, что две определенные книги окажутся поставлены рядом.
11. Библиотечка состоит из десяти различных книг, причем пять книг стоят по 4 рубля каждая, три книги – по одному рублю и две книги – по 3 рубля. Найти вероятность того, что взятые наудачу две книги стоят 5 рублей.
12. В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?
13. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов.
2. Брошена игральная кость. Найти вероятность того, что выпадет четное число очков.
3. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4.
4. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.
5. В мешочке имеется 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о, п, р, с, т. Найти вероятность того что на вытянутых по одному и расположенных в «одну линию» кубиков можно будет прочесть слово «спорт».
6. Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлеченный кубик будет иметь окрашенных граней:
а) одну; б)две; в) три.
7. На каждой из шести одинаковых карточек напечатана одна из следующих букв: а, т, м, р, с, о. Карточки тщательно перемешаны. Найти вероятность того, что на четырех, вытянутых по одной и расположенных «в одну линию» карточках можно будет прочесть слово «трос».
8. Из тщательно перемешанного полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая кость: а) оказалась дублем; б) не есть дубль.
9. В замке на общей оси пять дисков. Каждый диск разделен на шесть секторов, на которых написаны различные буквы. Замок открывается только в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Найти вероятность того, что при произвольной установке дисков замок можно будет открыть.
10. Восемь различных книг расставляют наудачу на одной полке. Найти вероятность того, что две определенные книги окажутся поставлены рядом.
11. Библиотечка состоит из десяти различных книг, причем пять книг стоят по 4 рубля каждая, три книги – по одному рублю и две книги – по 3 рубля. Найти вероятность того, что взятые наудачу две книги стоят 5 рублей.
12. В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?
13. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов.
Комментариев нет:
Отправить комментарий